There are two identical vessels filled with equal amounts of ice. The vessels are of different metals., If the ice melts in the two vessels in $20$ and $35$ minutes respectively, the ratio of the coefficients of thermal conductivity of the two metals is

  • A

    $4:7$

  • B

    $7:4$

  • C

    $16:49$

  • D

    $49:16$

Similar Questions

What is the temperature (in $^oC$) of the steel-copper junction in the steady state of the system shown in Figure Length of the steel rod $=15.0\; cm ,$ length of the copper rod $=10.0\; cm ,$ temperature of the furnace $=300^{\circ} C ,$ temperature of the other end $=0^{\circ} C .$ The area of cross section of the steel rod is twice that of the copper rod. (Thermal conductivity of steel $=50.2 \;J s ^{-1} m ^{-1} K ^{-1} ;$ and of copper $\left.=385 \;J s ^{-1} m ^{-1} K ^{-1}\right)$

Two rods $A$ and $B$ of same cross-sectional are $A$ and length $l$ connected in series between a source $(T_1 = 100^o C)$ and a sink $(T_2 = 0^o C)$ as shown in figure. The rod is laterally insulated  If $G_A$ and $G_B$ are the temperature gradients across the rod $A$ and $B$, then 

An iron bar $\left(L_{1}=0.1\; m , A_{1}\right.$ $\left.=0.02 \;m ^{2}, K_{1}=79 \;W m ^{-1} K ^{-1}\right)$ and a brass bar $\left(L_{2}=0.1\; m , A_{2}=0.02\; m ^{2}\right.$ $K_{2}=109 \;Wm ^{-1} K ^{-1}$ are soldered end to end as shown in Figure. The free ends of the iron bar and brass bar are maintained at $373 \;K$ and $273\; K$ respectively. Obtain expressions for and hence compute

$(i)$ the temperature of the junction of the two bars,

$(ii)$ the equivalent thermal conductivity of the compound bar, and

$(iii)$ the heat current through the compound bar.

A wall has two layers $A$ and $B$, each made of a different material. Both the layers have the same thickness. The thermal conductivity of the material of $A$ is twice that of $B$. Under thermal equilibrium, the temperature difference across the wall is $36\,^oC$. The temperature difference across the layer $A$ is ......... $^oC$

The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity $K$ and $2K$ and thickness $x$ and $4x$ , respectively are $T_2$ and $T_1$ ($T_2$ > $T_1$). The rate of heat transfer through the slab, in a steady state is $\left( {\frac{{A({T_2} - {T_1})K}}{x}} \right)f$, with $f $ which equal to

  • [AIIMS 2017]