This question has Statement $1$ and Statement $2$ . Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement $1$: A charged particle is moving at right angle to a static magnetic field . During the motion the kinetic energy of the charge remains unchanged.

Statement $2$: Static magnetic field exert force on a moving charge in the direction perpendicular to the magnetic field.

  • [AIEEE 2012]
  • A

    Statement $1$ is false, Statement $2$ is true.

  • B

    Statement $1$ is true, Statement $2$ is true,
    Statement $2$ is not the correct explanation of Statement $1$.

  • C

    Statement $1$ is true, Statement $2$ is false

  • D

    Statement $1$ is true, Statement $2$ is true,
    Statement $2$ is the correct explanation of Statement $1$.

Similar Questions

Two very long, straight, parallel wires carry steady currents $I$ and $-I$ respectively. The distance  etween the wires is $d$. At a certain instant of time, a point charge $q$ is at a point equidistant from the two wires, in the plane of the wires. Its instantaneous velocity $v$ is perpendicular to the plane of wires. The magnitude of the force due to the magnetic field acting on the charge at this instant is

An electron, a proton and an alpha particle having the same kinetic energy are moving in circular orbits of radii $r_e,r_p$ and ${r_\alpha }$ respectively in a uniform magnetic field $B$. The relation between $r_e,r_p$ and $\;{r_\alpha }$ is

  • [JEE MAIN 2018]

If $\alpha $ and $\beta  - $ particles are moving with equal velocity perpendicular to the flux density $B$, then the radii of their paths will be

In toroid magnetic field on axis will be the radius $=0.5\, cm ,$ current $=1.5\, A ,$ turns $=250,$ permeability $=700$ (in Tesla)

  • [AIIMS 2019]

A particle of charge $ - 16 \times {10^{ - 18}}$ $coulomb$ moving with velocity $10\,\,m{s^{ - 1}}$ along the $x$-axis enters a region where a magnetic field of induction $B$ is along the $y$-axis, and an electric field of magnitude ${10^4}\,\,V/m$ is along the negative $z$-axis. If the charged particle continues moving along the $x$-axis, the magnitude of $B$ is

  • [AIEEE 2003]