Give definition of magnetic field and give its unit.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Magnitude of force on electric charge in magnetic field is given by,

$\mathrm{F}=\mathrm{B} q u \sin \theta$ $\therefore \quad \mathrm{B}=\frac{\mathrm{F}}{q v \sin \theta}$

The magnitude of magnetic field $B$ is $1 \mathrm{SI}$ unit, when the force acting on a unit charge $(1 \mathrm{C})$,

moving perpendicular to $B$ with a speed $1 \mathrm{~m} / \mathrm{s}$ in one newton.

$SI$ unit:

Unit of $B$ $=\frac{\text { Unit of F }}{q v \sin \theta}$

$=\frac{1 \mathrm{~N}}{1 \mathrm{C} \times 1 \mathrm{~ms}^{-1} \times 1}=\frac{1 \mathrm{~N}}{1 \mathrm{Cs}^{-1} \times 1 \mathrm{~m}}$

$\quad=1 \mathrm{NsC}^{-1} \mathrm{~m}^{-1}$ is also called Tesla

$\quad=1 \frac{\mathrm{N}}{\mathrm{Am}}$

$\quad=1 \mathrm{NA}^{-1} \mathrm{~m}^{-1}=1 \mathrm{Tesla}$

Similar Questions

Two very long, straight, parallel wires carry steady currents $I$ and $-I$ respectively. The distance  etween the wires is $d$. At a certain instant of time, a point charge $q$ is at a point equidistant from the two wires, in the plane of the wires. Its instantaneous velocity $v$ is perpendicular to the plane of wires. The magnitude of the force due to the magnetic field acting on the charge at this instant is

A proton enters a magnetic field of flux density $1.5\,weber/{m^2}$ with a velocity of $2 \times {10^7}\,m/\sec $ at an angle of $30^\circ $ with the field. The force on the proton will be

If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field, then

 A charged particle (electron or proton) is introduced at the origin $(x=0, y=0, z=0)$ with a given initial velocity $\overrightarrow{\mathrm{v}}$. A uniform electric field $\overrightarrow{\mathrm{E}}$ and magnetic field $\vec{B}$ are given in columns $1,2$ and $3$ , respectively. The quantities $E_0, B_0$ are positive in magnitude.

column $I$

column $II$ column $III$
$(I)$ Electron with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(i)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0^2 \hat{\mathrm{Z}}$ $(P)$ $\overrightarrow{\mathrm{B}}=-\mathrm{B}_0 \hat{\mathrm{x}}$
$(II)$ Electron with $\overrightarrow{\mathrm{v}}=\frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{y}}$ $(ii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{y}}$ $(Q)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{x}}$
$(III)$ Proton with $\overrightarrow{\mathrm{v}}=0$ $(iii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{x}}$ $(R)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{y}}$
$(IV)$ Proton with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(iv)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{x}}$ $(S)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{z}}$

($1$) In which case will the particle move in a straight line with constant velocity?

$[A] (II) (iii) (S)$    $[B] (IV) (i) (S)$   $[C] (III) (ii) (R)$   $[D] (III) (iii) (P)$

($2$) In which case will the particle describe a helical path with axis along the positive $z$ direction?

$[A] (II) (ii) (R)$   $[B] (IV) (ii) (R)$  $[C] (IV) (i) (S)$   $[D] (III) (iii)(P)$

($3$)  In which case would be particle move in a straight line along the negative direction of y-axis (i.e., more along $-\hat{y}$ )?

$[A] (IV) (ii) (S)$   $[B] (III) (ii) (P)$   $[C]$ (II) (iii) $(Q)$   $[D] (III) (ii) (R)$

  • [IIT 2017]

A very high magnetic field is applied to a stationary charge. Then the charge experiences