तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए

अधिकतम $2$ चित्त प्रकट होना

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$

$\therefore$ Accordingly, $n ( S )=8$

It is known that the probability of an event $A$ is given by

$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$

Let $E$ be the event of the occurrence of at most $2$ heads.

Accordingly, $E =\{ HHT , \,HTH , \,THH , \,HTT , \,THT \,, TTH , \,TTT \}$

$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$

Similar Questions

शब्द $'ASSASSINATION'$ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर एक व्यंजन (consonant) है।

तीन पांसे को उछालने पर $1$ बार में ही $16$ आने की प्रायिकता है

एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए

$3$ या $3$ से बड़ी संख्या प्रकट होना

शब्द “$PROBABILITY$” से एक अक्षर स्वेच्छ रूप से चुना जाता है। चुने गये अक्षर के स्वर होने की प्रायिकता है

एक पांसा दो बार फेंका जाता है। केवल पहली फेंक में अंक $1$ आने की प्रायिकता है