तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए
अधिकतम $2$ चित्त प्रकट होना
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $E$ be the event of the occurrence of at most $2$ heads.
Accordingly, $E =\{ HHT , \,HTH , \,THH , \,HTT , \,THT \,, TTH , \,TTT \}$
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$
शब्द $'ASSASSINATION'$ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर एक व्यंजन (consonant) है।
तीन पांसे को उछालने पर $1$ बार में ही $16$ आने की प्रायिकता है
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए
$3$ या $3$ से बड़ी संख्या प्रकट होना
शब्द “$PROBABILITY$” से एक अक्षर स्वेच्छ रूप से चुना जाता है। चुने गये अक्षर के स्वर होने की प्रायिकता है
एक पांसा दो बार फेंका जाता है। केवल पहली फेंक में अंक $1$ आने की प्रायिकता है