Three coins are tossed once. Find the probability of getting atleast $2$ heads.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$

$\therefore$ Accordingly, $n ( S )=8$

It is known that the probability of an event $A$ is given by

$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$

Let $D$ be the event of the occurrence of at least $2$ heads.

Accordingly, $D =\{ HHH ,\, HHT \,, HTH \,, THH \}$

$\therefore P(D)=\frac{n(D)}{n(S)}=\frac{4}{8}=\frac{1}{2}$

Similar Questions

Out of $60 \%$ female and $40 \%$ male candidates appearing in an exam, $60\%$ candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability, that the chosen candidate is a female, is.

  • [JEE MAIN 2022]

Three identical dice are rolled. The probability that same number will appear on each of them will be

  • [IIT 1984]

A coin is tossed until a head appears or until the coin has been tossed five times. If a head does not occur on the first two tosses, then the probability that the coin will be tossed $5$ times is

The chance of throwing a total of $7$ or $12$ with $2$ dice, is

Three coins are tossed. Describe Three events which are mutually exclusive and exhaustive.