- Home
- Standard 12
- Physics
2. Electric Potential and Capacitance
hard
Three infinitely long linear charges of charge density $\lambda $ , $\lambda $ and $-2\lambda $ are placed in space. A point in space is specified by its perpendicular distance $r_1 , r_2 $ and $ r_3$ respectively from the linear charges. For the points which are equipotential
A
$\frac{{{r_1}{r_2}}}{{r_3^2}} = $ constant
B
${r_1}{r_2}{r_3}^2 = $ constant
C
${r_1}{r_2}{r_3}^{1/2} = $ constant
D
${r_1}{r_2}{r_3} = $ constant
Solution
$2{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_1}}}} \right) + 2{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_2}}}} \right) + 4{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_3}}}} \right) = {\rm{c}}$
$=\frac{\mathrm{r}_{3}^{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}=$ const.
Standard 12
Physics