Gujarati
Hindi
2. Electric Potential and Capacitance
hard

Three infinitely long linear charges of charge density $\lambda $ , $\lambda $ and $-2\lambda $ are placed in space. A point in space is specified by its perpendicular distance $r_1 , r_2 $ and $ r_3$ respectively from the linear charges. For the points which are equipotential

A

$\frac{{{r_1}{r_2}}}{{r_3^2}} = $ constant

B

${r_1}{r_2}{r_3}^2 = $ constant

C

${r_1}{r_2}{r_3}^{1/2} = $ constant

D

${r_1}{r_2}{r_3} = $ constant

Solution

$2{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_1}}}} \right) + 2{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_2}}}} \right) + 4{\rm{k}}\lambda \ln \left( {\frac{{\rm{a}}}{{{{\rm{r}}_3}}}} \right) = {\rm{c}}$

$=\frac{\mathrm{r}_{3}^{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}=$ const.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.