Gujarati
Hindi
14.Probability
normal

Three numbers are chosen at random from $1$ to $15$ . The probability that no two numbers are consecutive, is

A

$\frac{{11}}{{32}}$

B

$\frac{{44}}{{91}}$

C

$\frac{{33}}{{64}}$

D

$\frac{{22}}{{35}}$

Solution

Required probability

$ = \frac{{{\,^{13}}{C_3}}}{{{\,^{15}}{C_3}}} = \frac{{\frac{{13 \times 12 \times 11 \times 10!}}{{3! \times 10!}}}}{{\frac{{15 \times 14 \times 13 \times 12!}}{{3! \times 12!}}}}$

$=\frac{13 \times 12 \times 11}{15 \times 14 \times 13}=\frac{12 \times 11}{15 \times 14}=\frac{22}{35}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.