Three particles, located initially on the vertices of an equilateral triangle of side $L,$ start moving with a constant tangential acceleration towards each other in a cyclic manner, forming spiral loci that coverage at the centroid of the triangle. The length of one such spiral locus will be

  • A

    $L/3$

  • B

    $2L/\sqrt 3 $

  • C

    $L/\sqrt 3$ 

  • D

    $2L/3$

Similar Questions

A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$            ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} =  - 6\hat i + 4\hat j - 7\hat k$         ${\vec F_4} =  - \hat i - 3\hat j - 2\hat k$
Then the particle will move

A particle moves in space along the path $z = ax^3 + by^2$ in such a way that $\frac{dx}{dt} = c = \frac{dy}{dt}.$ Where $a, b$ and $c$ are contants. The acceleration of the  particle is

The velocity- time graph of a body falling from rest under gravity and rebounding from a solid surface is represented by which of the following graphs?

A particle moves from the point $\left( {2.0\hat i + 4.0\hat j} \right)\,m$, at $t = 0$ with an initial velocity $\left( {5.0\hat i + 4.0\hat j} \right)\,m{s^{ - 1  }}$. It is acted upon by a constant force which produces a constant acceleration $\left( {4.0\hat i + 4.0\hat j} \right)\,m{s^{ - 2}}$. What is the distance of the particle from the origin at time $2\,s$

  • [JEE MAIN 2019]

Explain average velocity ,instantaneous velocity and components of velocity for motion in a plane.