Three particles each of mass $m$ are placed at the corners of equilateral triangle of side $l$
Which of the following is lare correct?
Moment of inertia about axis ' $1$ ' is $\frac{5}{4} ml^2$
Moment of inertia about axis ' $2$ ' is $\frac{3}{4} ml^2$
Moment of inertia about an axis passing through one corner and perpendicular to the plane is $2 ml^2$
All of these
Two loops $P$ and $Q$ are made from a uniform wire. The radii of $P$ and $Q$ are $r_1$ and $r_2$ respectively, and their moments of inertia are $I_1$ and $I_2$ respectively. If $I_2/I_1=4$ then $\frac{{{r_2}}}{{{r_1}}}$ equals
A tube of length $L$ is filled completely with an incompressible liquid of mass $M$ and closed at both the ends. The tube is then rotated in a horizontal plane about one of its end with a uniform angular velocity $\omega$. The force exerted by the liquid at the other end is
$A$ non uniform rod $OA$ of linear mass density $\lambda = \lambda_0x$ $(\lambda_0 =$ const.) is suspended from ceiling with hinge joint $O$ & light string as shown in figure. Find the angular acceleration of rod just after the string is cut.
Two spheres are rolling with same velocity (for their $C. M.$) their ratio of kinetic energy is $2 : 1$ & radius ratio is $2 : 1$, their mass ratio will be :
Five masses each of $2\, kg$ are placed on a horizontal circular disc, which can be rotated about a vertical axis passing through its centre and all the masses be equidistant from the axis and at a distance of $10\, cm$ from it. The moment of inertia of the whole system (in $gm-cm^2$) is (Assume disc is of negligible mass)