Three point charges $q_1, q_2, q_3$ are placed at the vertices of a triangle if force on $q_1$ and $q_2$ are $\left( {2\hat i - \hat j} \right)\,N$ and $\left( {\hat i + 3\hat j} \right)\,N$, respeactively, then what will be force on $q_3$ ?
Zero
$\left( { - 3\hat i - 2\hat j} \right)\,N$
$\left( {\hat i - \hat j} \right)\,N$
Cannot be calculated
Three charges are placed as shown in figure. The magnitude of $q_1$ is $2.00\, \mu C$, but its sign and the value of the charge $q_2$ are not known. Charge $q_3$ is $+4.00\, \mu C$, and the net force on $q_3$ is entirely in the negative $x-$ direction. As per the condition given the sign of $q_1$ and $q_2$ will be
Two identical non-conducting thin hemispherical shells each of radius $R$ are brought in contact to make a complete sphere . If a total charge $Q$ is uniformly distributed on them, how much minimum force $F$ will be required to hold them together
Three points charges are placed at the corners of an equilateral triangle of side $L$ as shown in the figure.
In given diagram. Find distance of neutral point from particle of charge $e$ is......$cm$
$ + 2\,C$ and $ + 6\,C$ two charges are repelling each other with a force of $12\,N$. If each charge is given $ - 2\,C$ of charge, then the value of the force will be