A simple pendulum of period $T$ has a metal bob which is negatively charged. If it is allowed to oscillate above a positively charged metal plate, its period will
Remains equal to $T$
Less than $T$
Greater than $T$
Infinite
When air is replaced by a dielectric medium of constant $k$, the maximum force of attraction between two charges separated by a distance
$5$ charges each of magnitude $10^{-5} \,C$ and mass $1 \,kg$ are placed (fixed) symmetrically about a movable central charge of magnitude $5 \times 10^{-5} \,C$ and mass $0.5 \,kg$ as shown in the figure given below. The charge at $P_1$ is removed. The acceleration of the central charge is [Given, $\left.O P_1=O P_2=O P_3=O P_4=O P_5=1 m , \frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\right]$
Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10$ micro-coulomb) are suspended by two insulating threads of equal lengths $1\,m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle ${60^o}$ between them, as shown in the figure. What is the tension in the threads......$N$ (Given: $\frac{1}{{(4\pi {\varepsilon _0})}} = 9 \times {10^9}\,Nm/{C^2}$)
If two charges $q _1$ and $q _2$ are separated with distance ' $d$ ' and placed in a medium of dielectric constant $K$. What will be the equivalent distance between charges in air for the same electrostatic force?
The electric field between the two spheres of a charged spherical condenser