Three rods $A, B$ and $C$ of thermal conductivities $K, 2\,K$ and $4\,K$, cross-sectional areas $A, 2\,A$ and $2\,A$ and lengths $2l, l$ and $l$ respectively are connected as shown in the figure. If the ends of the rods are maintained at temperatures $100^o\,C, 50^o\,C$, and $0^o\,C$ respectively, then the temperature $\theta$ of the junction is ......... $^oC$
$\frac{300}{7}$
$20$
$\frac{200}{7}$
$\frac{200}{13} $
One likes to sit under sunshine in winter season, because
A wall consists of alternating blocks of length $d$ and coefficient of thermal conductivity $K_{1}$ and $K_{2}$ respectively as shown in figure. The cross sectional area of the blocks are the same. The equivalent coefficient of thermal conductivity of the wall between left and right is
Value of temperature gradient is $80\,^oC/m$ on a rod of $0.5\,m$ length. Temperature of hot end is $30\,^oC$, then what is the temperature of cold end ?
Two rectangular blocks $A$ and $B$ of different metals have same length and same area of cross-section. They are kept in such a way that their cross-sectional area touch each other. The temperature at one end of $A$ is $100°C$ and that of $B$ at the other end is $0°C$ . If the ratio of their thermal conductivity is $1 : 3$ , then under steady state, the temperature of the junction in contact will be ........ $^oC$
Three rods made of the same material and having same cross-sectional area but different lengths $10\, cm, 20\, cm$ and $30\, cm$ are joined as shown. The temperature of the junction is......... $^oC$