Three rods $AB, BC$ and $AC$ having thermal resistances of $10\, units, \,10 \,units$ and $20 \,units,$ respectively, are connected as shown in the figure. Ends $A$ and $C$ are maintained at constant temperatures of $100^o C$ and $0^o C,$ respectively. The rate at which the heat is crossing junction $B$ is   ........ $ \mathrm{units}$

814-18

  • A

    $5$

  • B

    $10$

  • C

    $20$

  • D

    $7.5$

Similar Questions

Two metallic blocks $M_{1}$ and $M_{2}$ of same area of cross-section are connected to each other (as shown in figure). If the thermal conductivity of $M _{2}$ is $K$ then the thermal conductivity of $M _{1}$ will be ]...............$K$ [Assume steady state heat conduction]

  • [JEE MAIN 2022]

What is thermal steady state ?

The outer faces of a rectangular slab made of equal thickness of iron and brass are maintained at $100^{\circ} C$ and $0^{\circ} C$ respectively. The temperature at the interface is ........... $^{\circ} C$ (Thermal conductivity of iron and brass are $0.2$ and $0.3$ respectively.)

A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of $0.1$ gm of ice per second. If the rod is replaced by another with half the length and double the radius of the first and if the thermal conductivity of material of second rod is $\frac{1}{4}$ that of first, the rate at which ice melts in $gm/\sec $will be

A copper rod $2\,m$ long has a circular cross-section of radius $1\, cm$. One end is kept  at $100^o\,C$ and the other at $0^o\,C$ and the surface is covered by nonconducting material to check the heat losses through the surface. The thermal  resistance of the bar in degree kelvin per watt is (Take thermal conductivity $K = 401\, W/m-K$ of copper):-