A wall consists of alternating blocks of length $d$ and coefficient of thermal conductivity $K_{1}$ and $K_{2}$ respectively as shown in figure. The cross sectional area of the blocks are the same. The equivalent coefficient of thermal conductivity of the wall between left and right is

86-78

  • [NEET 2017]
  • A

    $\frac{{2{K_1}{K_2}}}{{{K_1} + {K_2}}}$

  • B

    $\frac{{{K_1} + {K_2}}}{3}$

  • C

    $\;\frac{{{K_1}{K_2}}}{{2({K_1} + {K_2})}}$

  • D

    $\;\frac{{{K_1} + {K_2}}}{2}$

Similar Questions

Three rods of identical cross-section and lengths are made of three different materials of thermal conductivity $K _{1}, K _{2},$ and $K _{3}$, respectively. They are joined together at their ends to make a long rod (see figure). One end of the long rod is maintained at $100^{\circ} C$ and the ther at $0^{\circ} C$ (see figure). If the joints of the rod are at  $70^{\circ} C$ and $20^{\circ} C$ in steady state and there is no loss of energy from the surface of the rod, the correct relationship between $K _{1}, K _{2}$ and $K _{3}$ is 

  • [JEE MAIN 2020]

A slab consists of two parallel layers of copper and brass of the same thickness and having thermal conductivities in the ratio $1 : 4$ . If the free face of brass is at ${100^o}C$ and that of copper at $0^\circ C $, the temperature of interface is ........ $^oC$

  • [IIT 1981]

A rod of length $L$ and uniform cross-sectional area has varying thermal conductivity which changes linearly from $2K$ at endAto $K$ at the other end $B$. The endsA and $B$ of the rod are maintained at constant temperature $100^o C$ and $0^o C$, respectively. At steady state, the graph of temperature : $T = T(x)$ where $x =$ distance from end $A$ will be

Two metal rods $1$ and $2$ of same lengths have same temperature difference between their ends. Their thermal conductivities are $K_1$ and $K_2$ and cross sectional areas $A_1$ and $A_2$ , respectively. If the rate of heat conduction in $1$ is four times that in $2$, then

A hollow sphere of inner radius $R$ and outer radius $2R$ is made of a material of thermal conductivity $K$. It is surrounded by another hollow sphere of inner radius $2R$ and outer radius $3R$ made of same material of thermal conductivity $K$. The inside of smaller sphere is maintained at $0^o C$ and the outside of bigger sphere at $100^o C$. The system is in steady state. The temperature of the interface will be ........ $^oC$