Three rods of the same dimensions have thermal conductivities $3k, 2k$ and $k$. They are arranged as shown, with their ends at $100\,^oC, 50\,^oC$ and $0\,^oC$. The temperature of their junction is

829-172

  • A

    $75\,^oC$

  • B

    $\frac{{200}}{3}\,^oC$

  • C

    $40\,^oC$

  • D

    $\frac{{100}}{3}\,^oC$

Similar Questions

A large cylindrical rod of length $L$ is made by joining two identical rods of copper and steel of length $(\frac {L}{2})$ each . The rods are completely insulated from the surroundings. If the free end of copper rod is maintained at $100\,^oC$ and that of steel at $0\,^oC$ then the temperature of junction is........$^oC$ (Thermal conductivity of copper is $9\,times$ that of steel)

  • [AIEEE 2012]

Find effective thermal resistance between $A$ & $B$ of cube made up of $12$ rods of same dimensions and shown given thermal conductivity. [ $l =$ length of rod, $a =$ cross section area of rod]

A room is maintained at ${20^o}C$ by a heater of resistance $20$ ohm connected to $200$ volt mains. The temperature is uniform through out the room and heat is transmitted through a glass window of area $1{m^2}$ and thickness $0.2$ cm. What will be the temperature outside ....... $^oC$ ? Given that thermal conductivity $K=0.2$ for glass is and $J = 4.2 J/cal$

  • [IIT 1978]

According to the experiment of Ingen Hausz the relation between the thermal conductivity of a metal rod is $ K$ and the length of the rod whenever the wax melts is

A slab of stone of area $0.36\;m ^2$ and thickness $0.1 \;m$ is exposed on the lower surface to steam at $100^{\circ} C$. A block of ice at $0^{\circ} C$ rests on the upper surface of the slab. In one hour $4.8\; kg$ of ice is melted. The thermal conductivity of slab is .......... $J / m / s /{ }^{\circ} C$ (Given latent heat of fusion of ice $=3.36 \times 10^5\; J kg ^{-1}$)

  • [AIPMT 2012]