Three thin metal rods, each of mass $M$ and length $L$ are welded to form an equilateral triangle. The moment of inertia of the composite structure about an axis passing through the centre of mass of the structure and perpendicular to its plane is

  • A

    $\frac {1}{2}\,ML^2$

  • B

    $\frac {1}{3}\,ML^2$

  • C

    $\frac {2}{3}\,ML^2$

  • D

    $\frac {1}{4}\,ML^2$

Similar Questions

Particles of masses $m, 2m, 3m, ...... nm$ $grams$ are placed on the same line at distances $l, 2l, 3l,...., nl\, cm$ from a fixed point. The distance of the centre of mass of the particles from the fixed point (in centimetres) is

A thin wire of length $\ell$ and mass $m$ is bent in the form of a semicircle as shown. Its moment of inertia about an axis joining its free ends will be ...........

 A thin circular ring of mass $m$ and radius $R$ is rotating  bout its axis with a constant angular velocity $\omega$. Two objects each of mass $M$ are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with an angular velocity $\omega '$  = 

A tube of length $L$ is filled completely with incompressible liquid of mass $M$ and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity $\omega $. The force exerted by the liquid on the tube at other end is

Five masses each of $2\, kg$ are placed on a horizontal circular disc, which can be rotated about a vertical axis passing through its centre and all the masses be equidistant from the axis and at a distance of $10\, cm$ from it. The moment of inertia of the whole system (in $gm-cm^2$) is (Assume disc is of negligible mass)