Two balls of mass $M$ and $2 \,M$ are thrown horizontally with the same initial velocity $v_{0}$ from top of a tall tower and experience a drag force of $-k v(k > 0)$, where $v$ is the instantaneous velocity. then,
the heavier ball will hit the ground further away than the lighter ball
the heavier ball will hit the ground closer than the lighter ball
both balls will hit the ground at the same point
both balls will hit the ground at the same time
A body is projected horizontally from a height with speed $20$ metres/sec. ........ $metres/sec$ will be its speed after $5$ seconds ($g = 10\,\,metres/{\sec ^2})$
A wheel of radius $r$ rolls without slipping with a speed $v$ on a horizontal road. When it is at a point $A$ on the road, a small jump of mud separates from the wheel at its highest point $B$ and drops at point $C$ on the road. The distance $AC$ will be
A ball rolls from the top of a stair way with a horizontal velocity $u\; m /s$ . If the steps are $h\; m$ high and $b\; m$ wide, the ball will hit the edge of the $n^{th}$ step, if $n=$
A child stands on the edge of the cliff $10\,m$ above the ground and throws a stone horizontally with an initial speed of $5\,ms ^{-1}$. Neglecting the air resistance, the speed with which the stone hits the ground will be $..........ms ^{-1}$ (given, $g =10\,ms ^{-2}$)
A ball rolls off the top of a stairway with horizontal velocity $\mathrm{u}$. The steps are $0.1 \mathrm{~m}$ high and $0.1 \mathrm{~m}$ wide. The minimum velocity $\mathrm{u}$ with which that ball just hits the step $5$ of the stairway will be $\sqrt{\mathrm{x}} \mathrm{ms}^{-1}$ where $\mathrm{x}=$___________ [use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ].