Two bars of thermal conductivities $K$ and $3K$ and lengths $1\,\, cm$ and $2\,\, cm$ respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is $0\,^oC$ and $100\,^oC$ respectively (see figure), then the temperature $\varphi $ of the interface is......... $^oC$

818-871

  • A

    $50$

  • B

    $\frac{{100}}{3}$

  • C

    $60$

  • D

    $\frac{{200}}{3}$

Similar Questions

Two cylinders $P$ and $Q$ have the same length and diameter and are made of different materials having thermal conductivities in the ratio $2 : 3$ . These two cylinders are combined to make a cylinder. One end of $P$ is kept at $100°C$  and another end of $Q$ at $0°C$ . The temperature at the interface of $P$ and $Q$ is ...... $^oC$

The coefficient of thermal conductivity of copper is nine times that of steel. In the composite cylindrical bar shown in the figure. What will be the temperature at the junction of copper and steel ....... $^oC$

Four conducting rods are joined to make a square. All rods are identical and ends $A, B$ and $C$ are maintained at given temperatures. choose $INCORRECT$ statement for given arrangement in steady state. (value of $\frac {KA}{L}$ is $1\frac{J}{{{S^o}C}}$ , symbols , have their usual meaning) 

In a steady state, the temperature at the end $A$ and $B$ of $20\,cm$ long rod $AB$ are $100\,^oC$ and $0\,^oC$ respectively. The temperature of a point $9\,cm$ from $A$ is....... $^oC$

Three identical rods have been joined at a junction to make it a $Y$ shape structure. If two free ends are maintained at $90\,^oC$ and the third end is at $30\,^oC$ , then what is the junction temperature $\theta $ ?......... $^oC$