Two blocks $A$ and $B$ of masses $1\,\,kg$ and $2\,\,kg$ are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to stretch the spring and then released. The ratio of $K.E.s$ of both the blocks is
$1$
$2$
$0.5$
$0.25$
Assume the aerodynamic drag force on a car is proportional to its speed. If the power output from the engine is doubled, then the maximum speed of the car.
When the momentum of a body increases by $100\%$, its $KE$ increases by .............. $\%$
A uniform chain of length $2\,m$ is kept on a table such that a length of $60\,\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$
Two bodies with masses $M_1$ and $M_2$ have equal kinetic energies. If $p_1$ and $p_2$ are their respective momenta, then $p_1/p_2$ is equal to
A block of mass $1\,kg$ is pushed up a surface inclined to horizontal at an angle of $30^o$ by a force of $10\,N$ parallel to the inclined surface (figure). The coefficient of friction between block and the incline is $0.1$. If the block is pushed up by $10\,m$ along the inclined calculate
$(a)$ work done against gravity
$(b)$ work done against force of friction
$(c)$ increases in potential energy
$(d)$ increases in kinetic energy
$(e)$ work done by applied force