Two blocks $A$  and  $B$  of masses  $1\,\,kg$  and  $2\,\,kg$  are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to stretch the spring and then released. The ratio of  $K.E.s$  of both the blocks is

  • A

    $1$

  • B

    $2$

  • C

    $0.5$

  • D

    $0.25$

Similar Questions

Assume the aerodynamic drag force on a car is proportional to its speed. If the power output from the engine is doubled, then the maximum speed of the car.

When the momentum of a body increases by $100\%$, its $KE$ increases by .............. $\%$

A uniform chain of length $2\,m$ is kept on a table such that a length of $60\,\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$

Two bodies with masses $M_1$ and $M_2$ have equal kinetic energies. If $p_1$ and $p_2$ are their respective momenta, then $p_1/p_2$ is equal to

A block of mass $1\,kg$ is pushed up a surface inclined to horizontal at an angle of $30^o$ by a force of $10\,N$ parallel to the inclined surface (figure). The coefficient of friction between block and the incline is $0.1$. If the block is pushed up by $10\,m$  along the inclined calculate 

$(a)$ work done against gravity

$(b)$ work done against force of friction

$(c)$ increases in potential energy

$(d)$ increases in kinetic energy

$(e)$ work done by applied force