Two blocks of masses $5\, kg$ and $4\, kg$ are in contact with each other on a frictionless table. When a horizontal force of $9\, N$ is applied to the block of mass $5\, kg$ , then the value of the force of contact between the two blocks is ........ $N$
$4$
$3$
$5$
$1$
Four blocks are connected as shown in the fig. on a horizontal frictionless surface of $m_1 = m_2 = m_3 = m_4$ then $T_3/T_4$ will be
A block of mass $m$ slides down on a wedge of mass $M$ as shown in figure. Let $\vec a_1$ be the acceleration of the wedge and $\vec a_2$ the acceleration of block w.r.t. ground. $N_1$ is the normal reaction between block and wedge and $N_2$ the normal reaction between wedge and ground. Friction is absent everywhere. Select the incorrect alternative
Two masses of $5\, kg$ and $3\, kg$ are suspended with the help of massless inextensible strings as shown in figure. The whole system is going upwards with an acceleration of $2\, ms^{-2}$. The tensions $T_1$ and $T_2$ are respectively (Take $g = 10\, ms^{-2}$)
Two blocks of mass $M_1 = 20\,kg$ and $M_2 = 12\,kg$ are connected by a metal rod of mass $8\,kg.$ The system is pulled vertically up by applying a force of $480\,N$ as shown. The tension at the mid-point of the rod is ........ $N$
Two blocks of mass $M$ and $m$ are kept on the trolley whose all surfaces are smooth select the correct statement