Two bodies $A$ and $B$ of same mass, area and surface finish with specific heats $S_A$ and $S_B\left(S_A > S_B\right)$ are allowed to cool for given temperature range. Temperature varies with time as ..........
In $5\, minutes,$ a body cools from $75^{\circ} {C}$ to $65^{\circ} {C}$ at room temperature of $25^{\circ} {C}$. The temperature of body at the end of next $5\, minutes$ is $......\,{ }^{\circ} {C} .$
Liquid is filled in a vessel which is kept in a room with temperature ${20^o}C$. When the temperature of the liquid is ${80^o}C$, then it loses heat at the rate of $60\;cal/\sec $. What will be the rate of loss of heat when the temperature of the liquid is ${40^o}C$ ....... $cal/\sec $
If a piece of metal is heated to temperature $\theta$ and then allowed to cool in a room which is at temperature $\theta_0$, the graph between the temperature $T$ of the metal and time t will be closest to
The temperature of a body falls from ${50^o}C$to ${40^o}C$ in $10$ minutes. If the temperature of the surroundings is ${20^o}C$ Then temperature of the body after another $10$ minutes will be ........ $^oC$
Instantaneous temperature difference between cooling body and the surroundings obeying Newton's law of cooling is $\theta$. Which of the following represents the variation of $\ln \theta$ with time $t$ ?