Gujarati
Hindi
1. Electric Charges and Fields
normal

Two charged spherical conductors of radii $R_1$ and $R_2$ are connected by a wire. The ratio of surface charge densities of the spheres $\sigma _1/\sigma _2$ will be

A

$\frac{{{R_1}}}{{{R_2}}}$

B

$\frac{{{R_2}}}{{{R_1}}}$

C

$\sqrt {\left( {\frac{{{R_1}}}{{{R_2}}}} \right)} $

D

$\frac{{R_1^2}}{{R_2^2}}$

Solution

Potential at the surface of spherical conductor of radius $\mathrm{R}$ carrying charge $\mathrm{Q},$ $\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}$

Let $Q_{1}$ and $Q_{2}$ are the charges on two spherical conductors of radii $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ respectively.

When these two charged spherical conductors connected by a wire. the potential at their surfaces becomes equal.

${\therefore \mathrm{V}_{\mathrm{s}_{1}}=\mathrm{V}_{\mathrm{s}_{2}} \Rightarrow \frac{\sigma_{1} \times 4 \pi \mathrm{R}_{1}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}_{1}}=\frac{\sigma_{2} \times 4 \pi \mathrm{R}_{2}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}_{2}}} $

${\Rightarrow \frac{\sigma_{1}}{\sigma_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.