Two charges each equal to $2\,\mu C$ are $0.5\,m$ apart. If both of them exist inside vacuum, then the force between them is.......$N$
$1.89$
$2.44$
$0.14$
$3.14$
Write limitation of Coulomb’s law.
Two identical conducting spheres having unequal positive charges $q_1$ and $q_2$ separated by distance $r$. If they are made to touch each other and then separated again to the same distance, the electrostatic force between them in this case will be :-
Three point charges are placed at the corners of an equilateral triangle. Assuming only electrostatic forces are acting
Four charge $Q _1, Q _2, Q _3$, and $Q _4$, of same magnitude are fixed along the $x$ axis at $x =-2 a - a ,+ a$ and $+2 a$, respectively. A positive charge $q$ is placed on the positive $y$ axis at a distance $b > 0$. Four options of the signs of these charges are given in List-$I$ . The direction of the forces on the charge q is given in List-$II$ Match List-$1$ with List-$II$ and select the correct answer using the code given below the lists.$Image$
List-$I$ | List-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, all positive | $1.\quad$ $+ x$ |
$Q.$ $\quad Q_1, Q_2$ positive $Q_3, Q_4$ negative | $2.\quad$ $-x$ |
$R.$ $\quad Q_1, Q_4$ positive $Q_2, Q_3$ negative | $3.\quad$ $+ y$ |
$S.$ $\quad Q_1, Q_3$ positive $Q_2, Q_4$ negative | $4.\quad$ $-y$ |
Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is