Two charges each of magnitude $Q$ are fixed at $2a$ distance apart. A third charge ($-q$ of mass $'m'$) is placed at the mid point of the two charges; now $-q$ charge is slightly displaced perpendicular to the line joining the charges then find its time period

  • A

    $2\pi \sqrt {\frac{{m{a^3}\pi\, { \in _0}}}{{Qq}}} $

  • B

    $2\pi \sqrt {\frac{{2m{a^3}\pi\, { \in _0}}}{{Qq}}} $

  • C

    $\pi \sqrt {\frac{{m{a^3}\pi\, { \in _0}}}{{Qq}}} $

  • D

    $\pi \sqrt {\frac{{2m{a^3}\pi\, { \in _0}}}{{Qq}}} $

Similar Questions

Positive point charges are placed at the vertices of a star shape as shown in the figure. Direction of the electrostatic force on a negative point charge at the centre $O$ of the star is

  • [KVPY 2017]

Three point charges $q_1, q_2, q_3$ are placed at the vertices of a triangle if force on $q_1$ and $q_2$ are $\left( {2\hat i - \hat j} \right)\,N$ and $\left( {\hat i + 3\hat j} \right)\,N$, respeactively, then what will be force on $q_3$ ?

The ratio of gravitational force and electrostatic repulsive force between two electrons is approximately (gravitational constant $=6.7 \times 10^{-11} \,Nm ^2 / kg ^2$, mass of an electron $=9.1 \times 10^{-31} \,kg$, charge on an electron $=1.6 \times 10^{-19} C$ )

  • [KVPY 2020]

Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to

  • [JEE MAIN 2013]

A point charge $q_1=4 q_0$ is placed at origin. Another point charge $q_2=-q_0$ is placed at $x =12\,cm$. Charge of proton is $q_0$. The proton is placed on $x$-axis so that the electrostatic force on the proton in zero. In this situation, the position of the proton from the origin is $..........cm$.

  • [JEE MAIN 2023]