Two coils of self inductances $2\, mH$ and $8\, mH$ Hare placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is......$mH$
$10$
$6$
$4$
$16$
A circular loop of radius $0.3\, cm$ lies parallel to a much bigger circular loop of radius $20 \,cm$. The centre of the small loop on the axis of the bigger loop. The distance between their centres is $15\, cm$. If a current of $20\, A$ flows through the smaller loop, then the flux linked with bigger loop is
Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be
$A$ long straight wire is placed along the axis of a circular ring of radius $R$. The mutual inductance of this system is
Two coils $P$ and $Q$ are separated by some distance. When a current of $3\, A$ flows through coil $P$ a magnetic flux of $10^{-3}\, Wb$ passes through $Q$. No current is passed through $Q$. When no current passes through $P$ and a current of $2\, A$ passes through $Q$, the flux through $P$ is
Find the mutual inductance in the arrangement, when a small circular loop of wire of radius ' $R$ ' is placed inside a large square loop of wire of side $L$ $( L \gg R )$. The loops are coplanar and their centres coincide :