Two copper balls, each weighing $10\,g$ are kept in air $10\, cm$ apart. If one electron from every ${10^6}$ atoms is transferred from one ball to the other, the coulomb force between them is (atomic weight of copper is $63.5$)
$2.0 \times {10^{10}}\,N$
$2.0 \times {10^4}\,N$
$2.0 \times {10^8}\,N$
$2.0 \times {10^6}\,N$
Two charges are at a distance $‘d’$ apart. If a copper plate (conducting medium) of thickness $\frac{d}{2}$ is placed between them, the effective force will be
A point charge $q_1=4 q_0$ is placed at origin. Another point charge $q_2=-q_0$ is placed at $x =12\,cm$. Charge of proton is $q_0$. The proton is placed on $x$-axis so that the electrostatic force on the proton in zero. In this situation, the position of the proton from the origin is $..........cm$.
Two identical conducting spheres $A$ and $B,$ carry equal charge. They are separated by a distance much larger than their diameter, and the force between them is $F$ . A third identical conducting sphere, $C,$ is uncharged. Sphere $C$ is first touched to $A,$ then to $B,$ and then removed. As a result, the force between $A$ and $B$ would be equal to
Explain vector form of Coulomb’s law and its importance. Write some important points for vector form of Coulomb’s law.
Two positive point charges of unequal magnitude are placed at a certain distance apart. A small positive test charge is placed at null point, then