Two dice are thrown. The events $A, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
Describe the events $B$ and $C$
When two dice are thrown, the sample space is given by
$s =\{(x, y): x, y=1,2,3,4,5,6\}$
$=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right]$
Accordingly,
$A =\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B =\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3) \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
$B$ and $C = B \cap C \quad\{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)\}$
In a game, a man wins $Rs.\,100$ if he gets $5$ or $6$ on a throw of a fair die and loses $Rs.\,50$ for getting any other number on the die. If he decides to throw the die either till he gets a five or a six or to a maximum of three throws, then his expected gain/loss (in rupees) is
For the two events $A$ and $B$, $P(A) = 0.38,\,$ $P(B) = 0.41,$ then the value of $P(A$ not) is
A bag $x$ contains $3$ white balls and $2$ black balls and another bag $y$ contains $2$ white balls and $4$ black balls. A bag and a ball out of it are picked at random. The probability that the ball is white, is
In a college of $300$ students, every student reads $5$ newspapers and every newspaper is read by $60$ students. The number of newspapers is
The chances of throwing a total of $3$ or $5$ or $11$ with two dice is