Gujarati
Hindi
9-1.Fluid Mechanics
normal

A wax candle floats vertically in a liquid of density twice that of wax. The candle burns at the rate of $4\  cm/hr$ . Then, with respect to the surface of the liquid the upper end of the candle will 

A

fall at the rate of $4\ cm/hr$

B

fall at the rate of $2\ cm/hr$

C

rise at the rate of $2\ cm/hr$

D

remain at the same height

Solution

$\frac{\mathrm{dh}}{\mathrm{dt}}=4 \mathrm{cm} / \mathrm{hr}$ given $\rho_{\ell}=2 \rho_{\mathrm{w}}$

$\mathrm{F}_{\mathrm{boyant}}=\rho_{\omega}(\mathrm{Ah}) \mathrm{g}=\left(\mathrm{Ah}_{2}\right) \rho_{\ell} \cdot \mathrm{g}$

$\rho_{\omega} \cdot \mathrm{Ahg}=\rho_{\ell} \cdot \mathrm{Ah}_{2} \mathrm{g}$

$\rho_{\omega} \cdot \mathrm{h}=\rho_{\ell} \cdot \mathrm{h}_{2}=2 \rho_{\omega} \cdot \mathrm{h}_{2}$

$\mathrm{h}=2 \mathrm{h}_{2}$

$\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{2 \mathrm{dh}_{2}}{\mathrm{dt}} \Rightarrow 4=\frac{2 \mathrm{dh}_{2}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dh}_{2}}{\mathrm{dt}}=2 \mathrm{cm} / \mathrm{hr}$

Therefore net fall of upper end $=\frac{\mathrm{dh}}{\mathrm{dt}}-\frac{\mathrm{dh}_{2}}{\mathrm{dt}}$

$=4 \mathrm{cm} / \mathrm{hr}-2 \mathrm{cm} / \mathrm{hr}$

$=2 \mathrm{cm} / \mathrm{hr}[\text { rate of fall of upper end of candle }]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.