Gujarati
Hindi
10-2.Transmission of Heat
normal

Two electric lamps $A$ and $B$ radiate the same power. Their filaments have the same dimensions and have emissivities $e_A$ and $e_B$. Their surface temperatures are $T_A$ and $T_B$. The ratio $\frac{{{T_A}}}{{{T_B}}}$ will be equal to :-

A

${\left( {\frac{{{e_B}}}{{{e_A}}}} \right)^{\frac{1}{4}}}$

B

${\left( {\frac{{{e_B}}}{{{e_A}}}} \right)^{\frac{1}{2}}}$

C

${\left( {\frac{{{e_A}}}{{{e_B}}}} \right)^{\frac{1}{2}}}$

D

${\left( {\frac{{{e_A}}}{{{e_B}}}} \right)^{\frac{1}{4}}}$

Solution

The power radiated by a filament is $\mathrm{P}=\mathrm{e}\left(\sigma \mathrm{T}^{4}\right)$

(area), where $\mathrm{e}=$ emissivity

$\sigma=$ Stefan's constant,

$\mathrm{T}=$ surface temperature.

Here, $\mathrm{eT}^{4}=$ constant or $\mathrm{e}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}^{4}=\mathrm{e}_{\mathrm{B}} \mathrm{T}_{\mathrm{B}}^{4}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.