Two forces of magnitude $3\;N$ and $4\;N $ respectively are acting on a body. Calculate the resultant force if the angle between them is $0^o$
$4$
$5$
$6$
$7$
$\vec{A}$ is a vector of magnitude $2.7$ units due east. What is the magnitude and direction of vector $4 \vec{A}$ ?
Two forces, ${F_1}$ and ${F_2}$ are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is
Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is
An object of $m\, kg$ with speed of $v\, m/s$ strikes a wall at an angle $\theta$ and rebounds at the same speed and same angle. The magnitude of the change in momentum of the object will be
The vector $\overrightarrow{O A}$ where $O$ is origin is given by $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$. Now it is rotated by $45^{\circ}$ anticlockwise about $O$. What will be the new vector?