Two identical spheres each of radius $R$ are kept at center-to-center spacing $4R$ as shown in the figure. They are charged and the electrostatic force of interaction between them is first calculated assuming them point like charges at their centers and the force is also measured experimentally. The calculated and measured forces are denoted by $F_c$ and $F_m$ respectively.
($F_c$ and $F_m$ denote magnitude of force)
When they carry charges of the same sign $F_c > F_m$ and when they carry charges of opposite signs $F_c < F_m$ only when they are insulator.
When they carry charges of the same sign $F_c > F_m$ and when they carry charges of opposite signs $F_c < F_m$ only when they are conductor.
When they carry charges of the same sign $F_c < F_m$ and when they carry charges of opposite signs $F_c > F_m$ irrespective of their material.
When they carry charges of the same sign $F_c > F_m$ and when they carry charges of opposite signs $F_c < F_m$ irrespective of their material.
The radius of two metallic spheres $A$ and $B$ are ${r_1}$ and ${r_2}$ respectively $({r_1} > {r_2})$. They are connected by a thin wire and the system is given a certain charge. The charge will be greater
Three point charges $q,-2 q$ and $2 q$ are placed on $x$-axis at a distance $x=0, x=\frac{3}{4} R$ and $x=R$ respectively from origin as shown. If $q =2 \times 10^{-6}\,C$ and $R =2\,cm$, the magnitude of net force experienced by the charge $-2 q$ is .......... $N$
Figure represents a crystal unit of cesium chloride, $\mathrm{CsCl}$. The cesium atoms, represented by open circles are situated at the corners of a cube of side $0.40\,\mathrm{nm}$, whereas a $\mathrm{Cl}$ atom is situated at the centre of the cube. The $\mathrm{Cs}$ atoms are deficient in one electron while the $\mathrm{Cl}$ atom carries an excess electron.
$(i)$ What is the net electric field on the $\mathrm{Cl}$ atom due to eight $\mathrm{Cs}$ atoms ?
$(ii)$ Suppose that the $\mathrm{Cs}$ atom at the corner $A$ is missing. What is the net force now on the $\mathrm{Cl}$ atom due to seven remaining $\mathrm{Cs}$ atoms ?
Four charges are arranged at the corners of a square $ABCD$, as shown. The force on a $+ve$ charge kept at the centre of the square is
In the given figure two tiny conducting balls of identical mass $m$ and identical charge $q$ hang from non-conducting threads of equal length $L$. Assume that $\theta$ is so small that $\tan \theta \approx \sin \theta $, then for equilibrium $x$ is equal to