For regular pentagon system shown in figure, find force on $q_0$
$\frac{{KQ{q_0}}}{{{x^2}}}$
$\frac{{2KQ{q_0}}}{{{x^2}}}$
$\frac{{KQ{q_0}}}{{{2x^2}}}$
zero
What is the net force on a $Cl^{-}$ placed at the centre of the bcc structure of $CsCl$
Two identical positive charges $Q$ each are fixed at a distance of ' $2 a$ ' apart from each other. Another point charge qo with mass ' $m$ ' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge $q_{0}$ executes $SHM$. The time period of oscillation of charge $q_{0}$ will be.
Two charges each equal to $2\,\mu C$ are $0.5\,m$ apart. If both of them exist inside vacuum, then the force between them is.......$N$
Figure represents a crystal unit of cesium chloride, $\mathrm{CsCl}$. The cesium atoms, represented by open circles are situated at the corners of a cube of side $0.40\,\mathrm{nm}$, whereas a $\mathrm{Cl}$ atom is situated at the centre of the cube. The $\mathrm{Cs}$ atoms are deficient in one electron while the $\mathrm{Cl}$ atom carries an excess electron.
$(i)$ What is the net electric field on the $\mathrm{Cl}$ atom due to eight $\mathrm{Cs}$ atoms ?
$(ii)$ Suppose that the $\mathrm{Cs}$ atom at the corner $A$ is missing. What is the net force now on the $\mathrm{Cl}$ atom due to seven remaining $\mathrm{Cs}$ atoms ?
Two equal charges of magnitude $Q$ each are placed at a distance $d$ apart. Their electrostatic energy is $E$. A third charge $-Q / 2$ is brought midway between these two charges. The electrostatic energy of the system is now