Two infinite sheets of uniform charge density $+\sigma$ and $-\sigma $ are parallel to each other as shown in the figure. Electric field at the
points to the left or to the right of the sheets is zero.
midpoint between the sheets is zero.
midpoint of the sheets is $\sigma / \varepsilon_0 $ and is directed towards right.
$A$ and $C$ both
Let $E_1(r), E_2(r)$ and $E_3(r)$ be the respective electric fields at a distance $r$ from a point charge $Q$, an infinitely long wire with constant linear charge density $\lambda$, and an infinite plane with uniform surface charge density $\sigma$. if $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ at a given distance $r_0$, then
An infinite line charge produces a field of $9 \times 10^4 \;N/C$ at a distance of $2\; cm$. Calculate the linear charge density in $\mu C / m$
Let there be a spherically symmetric charge distribution with charge density varying as $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, upto $r = R$ ,and $\rho (r) = 0$ for $r > R$ , where $r$ is the distance from the origin. The electric field at a distance $r(r < R)$ from the origin is given by
Two concentric conducting thin spherical shells $A$ and $B$ having radii ${r_A}$ and ${r_B}$ (${r_B} > {r_A})$ are charged to ${Q_A}$ and $ - {Q_B}$$(|{Q_B}|\, > \,|{Q_A}|)$. The electrical field along a line, (passing through the centre) is
Electric field at a point varies as ${r^o}$ for