Two infinitely long parallel conducting plates having surface charge densities $ + \sigma $ and $ - \sigma $ respectively, are separated by a small distance. The medium between the plates is vacuum. If ${\varepsilon _0}$ is the dielectric permittivity of vacuum, then the electric field in the region between the plates is
$0\,volts/meter$
$\frac{\sigma }{{2{\varepsilon _o}}} volts/meter$
$\frac{\sigma }{{{\varepsilon _o}}} volts/meter$
$\frac{{2\sigma }}{{{\varepsilon _o}}} volts/meter$
Obtain the expression of electric field at any point by continuous distribution of charge on a $(i)$ line $(ii)$ surface $(iii)$ volume.
A spherically symmetric charge distribution is considered with charge density varying as
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
Where, $r ( r < R )$ is the distance from the centre $O$ (as shown in figure). The electric field at point $P$ will be.
If the total charge enclosed by a surface is zero, does it imply that the electric field everywhere on the surface is zero ? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.
The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.
List-$I$ | List-$II$ |
$E$ is independent of $d$ | A point charge $Q$ at the origin |
$E \propto \frac{1}{d}$ | A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$. |
$E \propto \frac{1}{d^2}$ | An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$ |
$E \propto \frac{1}{d^3}$ | Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$ |
plane with uniform surface charge density |
An early model for an atom considered it to have a positively charged point nucleus of charge $Ze$, surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. For this model, what is the electric field at a distance $r$ from the nucleus?