- Home
- Standard 11
- Physics
13.Oscillations
medium
Two masses $M_{A}$ and $M_{B}$ are hung from two strings of length $l_{A}$ and $l_{B}$ respectively. They are executing SHM with frequency relation $f_{A}=2 f_{B}$, then relation
A
$l_{A}=4 l_{B},$ does not depend on mass
B
$l_{A}=\frac{l_{B}}{4},$ does not depend on mass
C
$l_A=2 l_B$ and $M_A=2M_B$
D
$l_{A}=\frac{l_{B}}{2}$ and $M_{A}=\frac{M_{B}}{2}$
(AIPMT-2000)
Solution
$f_{A}=2 f_{B}$
$\Rightarrow \frac{1}{2 \pi} \sqrt{\frac{g}{l_{A}}}=2 \times \frac{1}{2 \pi} \sqrt{\frac{g}{l_{B}}} $
$\quad \frac{1}{l_{A}}=4 \times \frac{1}{l_{B}}$
or, $l_{A}=\frac{l_{B}}{4},$ which does not depend on mass.
Standard 11
Physics
Similar Questions
medium