दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो

  • [AIPMT 2000]
  • A

    $L _{ A }=4 L _{ B }$ द्रव्यमान के माने बिना

  • B

    $L _{ A }= L _{ B } / 4,$ द्रव्यमान के माने बिना

  • C

    $l_A=2 l_B$ और $M_A=2M_B$

  • D

    $L _{ A }=2 L _{ B }$ और $M _{ A }= M _{ B } / 2$

Similar Questions

$m$ द्रव्यमान का एक पिण्ड एक स्प्रिंग पर $f = \frac{\omega }{{2\pi }}$ आवृत्ति से सरल आवर्त गति करता है। यदि ​स्प्रिंग का बल नियतांक $k$ और आयाम $A$ है, तब

दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है

द्रव्यमान $1 \; kg$ एवं $4 \; kg$ की दो वस्तुऐं एक ऊर्ध्वाधर कमानी द्वारा चित्र के अनुसार जोड़ी गयी हैं। अल्पतर द्रव्यमान कोणीय आवृत्ति $25 \; rad / s$ एवं आयाम $1.6 \; cm$ की सरल आवर्त गति कर रहा है जबकि बृहत्तर द्रव्यमान स्थिर रहता है। निकाय द्वारा फर्श पर लगाया गया अधिकतम बल है ( $g=10 \; ms ^{-2}$ लें).

  • [JEE MAIN 2014]

$l$ लम्बाई की एक स्प्रिंग् का बल-स्थिरांक $k$ है। जब इस पर भार $W$ लटकाया जाता है तो इसकी लम्बाई में वृद्धि $x$ होती है। यदि स्प्रिंग् को दो बराबर टुकड़ों में काटकर तथा उन्हें समान्तर क्रम में रखकर उन पर वही भार $W$ लटकाया जाये तो अब वृद्धि होगी

जब एक $1\, kg$ द्रव्यमान की वस्तु किसी निश्चित हल्की स्प्रिंग  से उध्र्वत: लटकाई जाती है, तो इसकी लम्बाई $5\, cm$ बढ़ जाती है यदि स्प्रिंग से $2\, kg$ का गुटका लटकाकर इसे $10 \,cm$ तक खींच कर छोड़ दिया जाये तो इसका अधिकतम वेग $(m/s)$ में होगा (गुरुत्वीय त्वरण $ = 10\,m/{s^2})$