Two masses $m_1$ and $m_2$ connected by a spring of spring constant $k$ rest on a frictionless surface. If the masses are pulled apart and let go, the time period of oscillation is

  • [KVPY 2010]
  • A

    $T=2 \pi \sqrt{\frac{1}{k}\left(\frac{m_1 m_2}{m_1+m_2}\right)}$

  • B

    $T=2 \pi \sqrt{k\left(\frac{m_1+m_2}{m_1 m_2}\right)}$

  • C

    $T=2 \pi \sqrt{\frac{m_1}{k}}$

  • D

    $T=2 \pi \sqrt{\frac{m_2}{k}}$

Similar Questions

The springs shown are identical. When $A = 4kg$, the elongation of spring is $1\, cm$. If $B = 6\,kg$, the elongation produced by it is  ..... $ cm$

Find maximum amplitude for safe $SHM$ (block does not topple during $SHM$) of $a$ cubical block of side $'a'$ on a smooth horizontal floor as shown in figure (spring is massless)

Two masses $M_{A}$ and $M_{B}$ are hung from two strings of length $l_{A}$ and $l_{B}$ respectively. They are executing SHM with frequency relation $f_{A}=2 f_{B}$, then relation

  • [AIPMT 2000]

A block whose mass is $1 \;kg$ is fastened to a spring. The spring has a spring constant of $50\; N m ^{-1}$. The block is pulled to a distance $x=10\; cm$ from its equilibrlum position at $x=0$ on a frictionless surface from rest at $t=0 .$ Calculate the kinetic, potentlal and total energles of the block when it is $5 \;cm$ away from the mean position.

Two identical springs have the same force constant $73.5 \,Nm ^{-1}$. The elongation produced in each spring in three cases shown in Figure-$1$, Figure-$2$ and Figure-$3$ are $\left(g=9.8 \,ms ^{-2}\right)$