Two masses ${m_1}$ and ${m_2}$ are suspended together by a massless spring of constant k. When the masses are in equilibrium, ${m_1}$ is removed without disturbing the system. Then the angular frequency of oscillation of ${m_2}$ is
$\sqrt {\frac{k}{{{m_1}}}} $
$\sqrt {\frac{k}{{{m_2}}}} $
$\sqrt {\frac{k}{{{m_1} + {m_2}}}} $
$\sqrt {\frac{k}{{{m_1}{m_2}}}} $
One end of a spring of force constant k is fixed to a vertical wall and the other to a block of mass m resting on a smooth horizontal surface. There is another wall at a distance ${x_0}$ from the black. The spring is then compressed by $2{x_0}$ and released. The time taken to strike the wall is
If a spring has time period $T$, and is cut into $n$ equal parts, then the time period of each part will be
A uniform rod of length $L$ and mass $M$ is pivoted at the centre. Its two ends are attached to two springs of equal spring constants $k$. The springs are fixed to rigid supports as shown in the figure, and the rod is free to oscillate in the horizontal plane. The rod is gently pushed through a small angle $\theta$ in one direction and released. The frequency of oscillation is
A uniform stick of mass $M$ and length $L$ is pivoted at its centre. Its ends are tied to two springs each of force constant $K$ . In the position shown in figure, the strings are in their natural length. When the stick is displaced through a small angle $\theta $ and released. The stick
A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released
let us take the position of mass when the spring is unstreched as $x=0,$ and the direction from left to right as the positive direction of $x$ -axis. Give $x$ as a function of time $t$ for the oscillating mass if at the moment we start the stopwatch $(t=0),$ the mass is
$(a)$ at the mean position,
$(b)$ at the maximum stretched position, and
$(c)$ at the maximum compressed position. In what way do these functions for $SHM$ differ from each other, in frequency, in amplitude or the inittal phase?