दो द्रव्यमान जिनके मान ${m_1}$एवं ${m_2}$ हैं, एक ही स्प्रिंग से जिसका स्प्रिंग नियतांक $k$ है, लटके हैं। जब दोनों द्रव्यमान सन्तुलन में है तब ${m_1}$ द्रव्यमान को सावधानीपूर्वक हटा लिया जाता है, तब ${m_2}$ की कोणीय आवृत्ति होगी

  • A

    $\sqrt {\frac{k}{{{m_1}}}} $

  • B

    $\sqrt {\frac{k}{{{m_2}}}} $

  • C

    $\sqrt {\frac{k}{{{m_1} + {m_2}}}} $

  • D

    $\sqrt {\frac{k}{{{m_1}{m_2}}}} $

Similar Questions

स्प्रिंग् नियतांक $K$ की एक स्प्रिंग् पर $m$ द्रव्यमान लटकाया गया है। अब ​स्प्रिंग् को दो बराबर भागों में काटकर किसी एक पर वही द्रव्यमान लटकाया जाता है, तो नया ​स्प्रिंग् नियतांक होगा

किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]

किसी स्प्रिंग से लटका हुआ $m$ द्रव्यमान $2\, sec$ में एक दोलन पूर्ण करता है यदि द्रव्यमान में  $2 \,kg$ की वृद्धि कर दी जाये तो आवर्तकाल में $1\, sec$ की वृद्धि हो जाती है। द्रव्यमान $m$ है .... $kg$

  • [AIIMS 2000]

दिए गए चित्रानुसार, $K$ और $2\,K$ स्प्रिंग स्थिरांक वाली दो स्प्रिंगें द्रव्यमान $m$ से जुड़ी हैं। यदि चित्र $(a)$ में दोलन काल $3\,s$ है, तो चित्र $(b)$ में दोलन काल $\sqrt{ x } s$. होगा। जहाँ $x$ का मान $..........$ है।

  • [JEE MAIN 2022]

दिए गए आरेख में $M$ द्रव्यमान का एक पिण्ड एक क्षैतिज कमानी से बंधा हैं, जिसका दूसरा सिरा किसी दढ़ सपोर्ट से जुड़ा है। कमानी का कमानी स्थिरांक $k$ है। यह पिण्ड किसी घर्षणहीन पष्ठ पर आवर्तकाल $T$ और आयाम $A$ के साथ दोलन करता है। जब यह पिण्ड साम्यावस्था की स्थिति पर होता है (आरेख देखिए) तब कोई अन्य पिण्ड, जिसका द्रव्यमान $m$ है, इस पिण्ड के ऊपर धीरे से जोड़ दिया जाता है। अब दोलन का नया आयाम होगा।

  • [JEE MAIN 2021]