Two particles $A$ and $B$ are projected simultaneously from a fixed point of the ground. Particle $A$ is projected on a smooth horizontal surface with speed $v$, while particle $B$ is projected in air with speed $\frac{2 v}{\sqrt{3}}$. If particle $B$ hits the particle $A$, the angle of projection of $B$ with the vertical is
$30$
$60$
$45$
Both $(a)$ and $(b)$
Two projectiles are projected at $30^{\circ}$ and $60^{\circ}$ with the horizontal with the same speed. The ratio of the maximum height attained by the two projectiles respectively is:
Figure shows a projectile thrown with speed $u=20 \,m / s$ at an angle $30^{\circ}$ with horizontal from the top of a building $40 \,m$ high. Then the horizontal range of projectile is ........... $m$
In a projectile motion, velocity at maximum height is
A body is thrown at angle $30^{\circ}$ to the horizontal with the velocity of $30\; m / s$. After $1\;sec$, its velocity will be (in $m/s$) $\left(g=10\; m / s ^{2}\right)$
The projectile motion of a particle of mass $5\, g$ is shown in the figure.
The initial velocity of the particle is $5 \sqrt{2}\, ms ^{-1}$ and the air resistance is assumed to be negligible. The magnitude of the change in momentum between the points $A$ and $B$ is $x \times 10^{-2}\, kgms ^{-1} .$ The value of $x ,$ to the nearest integer, is ...... .