Two particles $X $ and $Y$, of equal mass and with unequal positive charges, are free to move and are initially far away from each other. With $Y$ at rest, $X$ begins to move towards it with initial velocity $u$. After a long time, finally

  • A

    $X$ will stop, $Y$ will move with velocity $u$.

  • B

    $X$ and $Y$ will both move with velocities $u/2 $ each.

  • C

    $X $ will stop, $Y$  will move with velocity $< u.$

  • D

    both will move with velocities $< u/2.$ 

Similar Questions

Two free positive charges $4q$ and $q$ are a distance $l$ apart. What charge $Q$ is needed to achieve equilibrium for the entire system and where should it be placed form charge $q$ ?

Point charges $ + 4q,\, - q$ and $ + 4q$ are kept on the $x - $axis at points $x = 0,\,x = a$ and $x = 2a$ respectively, then

  • [AIPMT 1988]

Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10\, micro-coulomb$) are suspended by two insulating threads of equal lengths $3\, m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle $120^o$ between them, as shown in the figure. What is the tension in the threads (Given : $\frac{1}{{\left( {4\pi {\varepsilon _0}} \right)}} = 9 \times {10^9}\,Nm/{C^2}$)

There is another useful system of units, besides the $\mathrm{SI/MKS}$. A system, called the $\mathrm{CGS}$ (centimeter-gramsecond) system. In this system Coloumb’s law is given by $\vec F = \frac{{Qq}}{{{r^2}}} \cdot \hat r$ where the distance $r$ is measured in $cm\left( { = {{10}^{ - 2}}m} \right)$ , $\mathrm{F}$ in dynes $\left( { = {{10}^{ - 5}}N} \right)$  and the charges in electrostatic units $(\mathrm{es\,unit}$), where $1$ $\mathrm{esu}$ of charge $ = \frac{1}{{[3]}} \times {10^{ - 9}}C$. The number ${[3]}$ actually arises from the speed of light in vacuum which is now taken to be exactly given by $c = 2.99792458 \times {10^8}m/s$. An approximate value of $c$ then is $c = 3 \times {10^8}m/s$.

$(i)$ Show that the coloumb law in $\mathrm{CGS}$ units yields $1$ $\mathrm{esu}$ of charge = $= 1\,(dyne)$ ${1/2}\,cm$. Obtain the dimensions of units of charge in terms of mass $\mathrm{M}$, length $\mathrm{L}$ and time $\mathrm{T}$. Show that it is given in terms of fractional powers of $\mathrm{M}$ and $\mathrm{L}$ .

$(ii)$ Write $1$ $\mathrm{esu}$ of charge $=xC$, where $x$ is a dimensionless number. Show that this gives $\frac{1}{{4\pi { \in _0}}} = \frac{{{{10}^{ - 9}}}}{{{x^2}}}\frac{{N{m^2}}}{{{C^2}}}$ with $x = \frac{1}{{[3]}} \times {10^{ - 9}}$ we have, $\frac{1}{{4\pi { \in _0}}} = {[3]^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ or $\frac{1}{{4\pi { \in _0}}} = {\left( {2.99792458} \right)^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ (exactly).

Given below are three schematic graphs of potential energy $V(r)$ versus distance $r$ for three atomic particles : electron $\left(e^{-}\right)$, proton $\left(p^{+}\right)$and neutron $(n)$, in the presence of a nucleus at the origin $O$. The radius of the nucleus is $r_0$. The scale on the $V$-axis may not be the same for all figures. The correct pairing of each graph with the corresponding atomic particle is

  • [KVPY 2011]