Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

Two plates each of mass $m$ are connected by a massless spring as shown below. A weight $w$ is put on the upper plate which compresses the spring further. When $w$ is removed, the entire assembly jumps up. The minimum weight $w$ needed for the assembly to jump up when the weight is removed is just more than ...........$ \,m$

A

$1$

B

$2$

C

$3$

D

$4$

(KVPY-2011)

Solution

(b)

For block $m_2$ to lift off,

Spring force $=$ Weight of block

$\Rightarrow \quad k x=m g$ or $x=\frac{m g}{k}$

Now, from energy conservation (position ( $1$ and $11$ marked in the diagram),

Initial stored energy (due to $h$ compression) = Energy of extended spring + Potential energy of mass of upper block

$\Rightarrow \quad \frac{1}{2} k h^2=m g(h+x)+\frac{1}{2} k x^2$

$\Rightarrow \quad \frac{1}{2} k h^2=m g\left(h+\frac{m g}{k}\right)+\frac{1}{2} k\left(\frac{m g}{k}\right)^2$

$\Rightarrow \quad \frac{1}{2} k h^2=m g h+\frac{m^2 g^2}{k}+\frac{m^2 g^2}{2 k}$

$\Rightarrow \quad \frac{k h^2}{2}=m g h+\frac{3 m^2 g^2}{2 k}$

$\Rightarrow \quad k^2 h^2-(2 m g k) h-3 m^2 g^2=0$

$\Rightarrow h=\frac{2 m g k \pm \sqrt{4 m^2 g^2 k^2-4\left(k^2\right)\left(-3 m^2 g^2\right)}}{2 k^2}$

$=\frac{2 m g k \pm 4 m g k}{2 k^2}=\frac{3 m g}{k}$

or $h k=3 m g$

Now, considering equilibrium in position $1$ ,

Spring force $=$ Weight of upper block $+$ Weight of mass $M$

$\Rightarrow k h =m g+M g$

$\Rightarrow 3 m g =m g+M g$

$\text { or } M =2 m$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.