Two point charges $a$ and $b$, whose magnitudes are same are positioned at a certain  distance from each other with a at origin. Graph is drawn between electric field strength at  points between $a$ and $b$ and distance $x$ from a $E$ is taken positive if it is along the line joining from to be. From the graph, it can be decided that 

816-827

  • A

    $a$ is positive, $b$ is negative

  • B

    $a$ and $b$ both are positive

  • C

    $a$ and $b$ both are negative

  • D

    $a$ is negative, $b$ is positive

Similar Questions

A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to

  • [AIEEE 2005]

A wire of length $L\, (=20\, cm)$, is bent into a semicircular arc. If the two equal halves of the arc were each to be uniformly charged with charges $ \pm Q\,,\,\left[ {\left| Q \right| = {{10}^3}{\varepsilon _0}} \right]$ Coulomb where $\varepsilon _0$ is the permittivity (in $SI\, units$) of free space] the net electric field at the centre $O$ of the semicircular arc would be

  • [JEE MAIN 2015]

Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass $2 \mathrm{~g}$ being suspended through a silk thread of length $20 \mathrm{~cm}$ and remain stayed at a distance of $10 \mathrm{~cm}$ from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{\mathrm{x}}} \ \mu \mathrm{C}$ where $\mathrm{x}=$ ____________.  use $g=10 \mathrm{~m} / \mathrm{s}^2$ ]

  • [JEE MAIN 2024]

The tiny ball at the end of the thread shown in figure has a mass of $0.5 \, g$ and is  placed in a horizontal electric field of intensity $500\, N/C$. It is in equilibrium in the  position shown. The magnitude and sign of the charge on the ball is .....$\mu C$

Two charges each equal to $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ are placed at the corners of an equilateral triangle of side $a$. The electric field at the third corner is ${E_3}$ where $({E_0} = q/4\pi {\varepsilon _0}{a^2})$