Two sheets of thickness $d$ and $3d$, are touching each other. The temperature just outside the thinner sheet side is $A$, and on the side of the thicker sheet is $C$. The interface temperature is $B. A, B$ and $C$ are in arithmetic progressing, the ratio of thermal conductivity of thinner sheet and thicker sheet is
$1 : 3$
$3 : 1$
$2 : 3$
$1 : 9$
A cylinder of radius $R$ is surrounded by a cylindrical shell of inner radius $R$ and outer radius $2R$. The thermal conductivity of the material of the inner cylinder is $K_1$ and that of the outer cylinder is $K_2$. Assuming no loss of heat, the effective thermal conductivity of the system for heat flowing along the length of the cylinder is
Under steady state, the temperature of a body
At a common temperature, a block of wood and a block of metal feel equally cold or hot. The temperatures of block of wood and block of metal are
Three rods of Copper, Brass and Steel are welded together to form a $Y$ shaped structure. Area of cross - section of each rod $= 4\ cm^2$ . End of copper rod is maintained at $100^o C $ where as ends ofbrass and steel are kept at $0^o C$. Lengths of the copper, brass and steel rods are $46, 13$ and $12\ cms$ respectively. The rods are thermally insulated from surroundings excepts at ends. Thermal conductivities of copper, brass and steel are $0.92, 0.26$ and $0.12\ CGS$ units respectively. Rate ofheat flow through copper rod is ....... $cal\, s^{-1}$
The ratio of thermal conductivity of two rods of different material is $5 : 4$ . The two rods of same area of cross-section and same thermal resistance will have the lengths in the ratio