Two sheets of thickness $d$ and $3d$, are touching each other. The temperature just outside the thinner sheet side is $A$, and on the side of the thicker sheet is $C$. The interface temperature is $B. A, B$ and $C$ are in arithmetic progressing, the ratio of thermal conductivity of thinner sheet and thicker sheet is
$1 : 3$
$3 : 1$
$2 : 3$
$1 : 9$
A deep rectangular pond of surface area $A,$ containing water (denstity $=\rho,$ specific heat capactly $=s$ ), is located In a region where the outside air temperature is at a steady value of $-26^{\circ} {C}$. The thickness of the frozen ice layer In this pond, at a certaln Instant Is $x$.
Taking the thermal conductivity of Ice as ${K}$, and its specific latent heat of fusion as $L$, the rate of Increase of the thickness of ice layer, at this instant would be given by
A body of length 1m having cross sectional area $0.75\;m^2$ has heat flow through it at the rate of $ 6000\; Joule/sec$ . Then find the temperature difference if $K = 200\;J{m^{ - 1}}{K^{ - 1}}$ ...... $^oC$
$Assertion :$ Woolen clothes keep the body warm in winter
$Reason :$ Air is a bad conductor of heat.
One end of a thermally insulated rod is kept at a temperature $T_1$ and the other at $T_2$ . The rod is composed of two sections of length $l_1$ and $l_2$ and thermal conductivities $K_1$ and $K_2$ respectively. The temperature at the interface of the two section is
The figure shows a system of two concentric spheres of radii $r_1$ and $r_2$ and kept at temperatures $T_1$ and $T_2$, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is proportional to