Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$. The space around the masses is now filled with a liquid of specific gravity $3$. The gravitationalforce will now be
$3F$
$F$
$\frac{F}{3}$
$\frac{F}{9}$
In a certain region of space, the gravitational field is given by $-k/r$ , where $r$ is the distance and $k$ is a constant. If the gravitational potential at $r = r_0$ be $V_0$ , then what is the expression for the gravitational potential $(V)$ ?
Which of the following statements are true about acceleration due to gravity?
$(a)\,\,'g'$ decreases in moving away from the centre if $r > R$
$(b)\,\,'g'$ decreases in moving away from the centre if $r < R$
$(c)\,\,'g'$ is zero at the centre of earth
$(d)\,\,'g'$ decreases if earth stops rotating on its axis
If the distance between centres of earth and moon is $D$ and the mass of earth is $81\, times$ the mass of moon, then at what distance from centre of earth the gravitational force will be zero
Two stars of masses $m_1$ and $m_2$ are parts of a binary star system. The radii of their orbits are $r_1$ and $r_2$ respectively, measured from the centre of mass of the system. The magnitude of gravitational force $m_1$ exerts on $m_2$ is
If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is