Two springs of force constants $K$ and $2K$ are connected to a mass as shown below. The frequency of oscillation of the mass is

94-37

  • [AIIMS 2003]
  • A

    $(1/2\pi )\sqrt {(K/m)} $

  • B

    $(1/2\pi )\sqrt {(2K/m)} $

  • C

    $(1/2\pi )\sqrt {(3K/m)} $

  • D

    $(1/2\pi )\sqrt {(m/K)} $

Similar Questions

Figure $(a)$ shows a spring of force constant $k$ clamped rigidly at one end and a mass $m$ attached to its free end. A force $F$ applied at the free end stretches the spring. Figure $(b)$ shows the same spring with both ends free and attached to a mass $m$ at etther end. Each end of the spring in Figure $( b )$ is stretched by the same force $F.$

$(a)$ What is the maximum extension of the spring in the two cases?

$(b)$ If the mass in Figure $(a)$ and the two masses in Figure $(b)$ are released, what is the period of oscillation in each case?

Two bodies of masses $1\, kg$ and $4\, kg$ are connected to a vertical spring, as shown in the figure. The smaller mass executes simple harmonic motion of angular frequency $25\, rad/s$, and amplitude $1.6\, cm$ while the bigger mass remains stationary on the ground. The maximum force exerted by the system on the floor is ..... $N$ ( take $g = 10\, ms^{-2}$)

  • [JEE MAIN 2014]

Two identical balls A and B each of mass 0.1 kg are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of a circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06$\pi$ m and force constant 0.1N/m. Initially both the balls are displaced by an angle $\theta = \pi /6$ radian with respect to the diameter $PQ$ of the circle and released from rest. The frequency of oscillation of the ball B is

Identify correct statement among the following

A $5\, kg$ collar is attached to a spring of spring constant $500\, Nm^{-1}$. It slides without friction over a horizontal rod. The collar is displaced from its equillibrium position by $10\, cm$ and released. The time period of oscillation is