Two springs with negligible masses and force constant of $K_1 = 200\, Nm^{-1}$ and $K_2 = 160\, Nm^{-1}$ are attached to the block of mass $m = 10\, kg$ as shown in the figure. Initially the block is at rest, at the equilibrium position in which both springs are neither stretched nor compressed. At time $t = 0,$ a sharp impulse of $50\, Ns$ is given to the block with a hammer.

96-178

  • A

    Period of oscillations for the mass $m$ is $\frac{\pi}{3} \, s.$

  • B

    Maximum velocity of the mass $m$ during its oscillation is $5\, ms^{^{-1}}.$

  • C

    Data are insufficient to determine maximum velocity.

  • D

    $(A)$ and $(B)$ both

Similar Questions

One-forth length of a spring of force constant $K$ is cut away. The force constant of the remaining spring will be

Two bodies $M$ and $N $ of equal masses are suspended from two separate massless springs of force constants $k_1$ and $k_2$ respectively. If the two bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude $M$ to that of $N$ is

  • [IIT 1988]

A $1\,kg$ mass is attached to a spring of force constant $600\,N / m$ and rests on a smooth horizontal surface with other end of the spring tied to wall as shown in figure. A second mass of $0.5\,kg$ slides along the surface towards the first at $3\,m / s$. If the masses make a perfectly inelastic collision, then find amplitude and time period of oscillation of combined mass.

Figure $(a)$ shows a spring of force constant $k$ clamped rigidly at one end and a mass $m$ attached to its free end. A force $F$ applied at the free end stretches the spring. Figure $(b)$ shows the same spring with both ends free and attached to a mass $m$ at etther end. Each end of the spring in Figure $( b )$ is stretched by the same force $F.$

$(a)$ What is the maximum extension of the spring in the two cases?

$(b)$ If the mass in Figure $(a)$ and the two masses in Figure $(b)$ are released, what is the period of oscillation in each case?

A $2\, Kg$ block moving with $10\, m/s$ strikes a spring of constant $\pi ^2 N/m$ attached to $2\, Kg$ block at rest kept on a smooth floor. The time for which rear moving block remain in contact with spring will be ... $\sec$