The motion of a mass on a spring, with spring constant ${K}$ is as shown in figure. The equation of motion is given by $x(t)= A sin \omega t+ Bcos\omega t$ with $\omega=\sqrt{\frac{K}{m}}$ Suppose that at time $t=0$, the position of mass is $x(0)$ and velocity $v(0)$, then its displacement can also be represented as $x(t)=C \cos (\omega t-\phi)$, where $C$ and $\phi$ are
${C}=\sqrt{\frac{2 {v}(0)^{2}}{\omega^{2}}+{x}(0)^{2}}, \phi=\tan ^{-1}\left(\frac{{x}(0) \omega}{2 {v}(0)}\right)$
${C}=\sqrt{\frac{{v}(0)^{2}}{\omega^{2}}+{x}(0)^{2}}, \phi=\tan ^{-1}\left(\frac{{x}(0) \omega}{{v}(0)}\right)$
$C=\sqrt{\frac{2 v(0)^{2}}{\omega^{2}}+x(0)^{2}}, \phi=\tan ^{-1}\left(\frac{v(0)}{x(0) \omega}\right)$
${C}=\sqrt{\frac{{v}(0)^{2}}{\omega^{2}}+{x}(0)^{2}}, \phi=\tan ^{-1}\left(\frac{{v}(0)}{{x}(0) \omega}\right)$
The spring mass system oscillating horizontally. What will be the effect on the time period if the spring is made to oscillate vertically ?
A block of mass $m$ is attached to two springs of spring constants $k_1$ and $k_2$ as shown in figure. The block is displaced by $x$ towards right and released. The velocity of the block when it is at $x/2$ will be
A spring with $10$ coils has spring constant $k$. It is exactly cut into two halves, then each of these new springs will have a spring constant
A block of mass $2\,kg$ is attached with two identical springs of spring constant $20\,N / m$ each. The block is placed on a frictionless surface and the ends of the springs are attached to rigid supports (see figure). When the mass is displaced from its equilibrium position, it executes a simple harmonic motion. The time period of oscillation is $\frac{\pi}{\sqrt{x}}$ in SI unit. The value of $x$ is $..........$
The effective spring constant of two spring system as shown in figure will be