Gujarati
Hindi
5.Magnetism and Matter
medium

Two tangent galvanometer coils of same radius connected in series. The current flowing produces deflection of $60^o$ and $45^o$. The ratio of number of turns in coil is

A

$\frac{4}{3}$

B

$\frac{{\left( {\sqrt 3  + 1} \right)}}{1}$

C

$\frac{{\sqrt 3  + 1}}{{\sqrt 3  - 1}}$

D

$\frac{{\sqrt 3 }}{1}$

Solution

Tangent galvanometers are connected in series so current will be same in both.

${\mathrm{k}_{1} \text { tan } \theta_{1}=\mathrm{K}_{2} \tan \theta_{2}} $

${\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\tan \theta_{2}}{\tan \theta_{1}}=\frac{1}{\sqrt{3}}}$

$\mathrm{k} \propto \frac{\mathrm{R}}{\mathrm{N}}$ (radius is same for both)

$\frac{\mathrm{K}_{1}}{\mathrm{K}_{2}}=\frac{\mathrm{N}_{2}}{\mathrm{N}_{1}}$

$\Rightarrow \frac{\mathrm{N}_{1}}{\mathrm{N}_{2}}=\frac{\mathrm{K}_{2}}{\mathrm{K}_{1}}=\frac{\sqrt{3}}{1}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.