- Home
- Standard 13
- Quantitative Aptitude
7.Profit and Loss
hard
Two toys are sold at $Rs.\,504$ each. One toy brings the dealer a gain of $12 \%$ and the other a loss of $4 \%$. The gain or loss per cent by selling both the toys is
A
$3 \frac{5}{13} \%$ Profit
B
$4 \frac{5}{13} \%$ Profit
C
$5 \frac{1}{13} \%$ Profit
D
$2 \frac{3}{13} \%$ Loss
Solution
Let, the $C.P.$ of first toy be ₹ $x$.
$\therefore$ $C.P.$ of second toy $=₹ y$
Now, according to the question,
$\frac{x \times 112}{100}=504$
$\Rightarrow x=\frac{504 \times 100}{112}=₹ 450$
Again, $y \times \frac{96}{100}=504$
$\Rightarrow y=\frac{504 \times 100}{96}=₹ 525$
Total $C.P.$ $=₹(450+525)=₹ 975$
Total $S.P.$ $=₹(2 \times 504)=₹ 1008$
Gain $=₹(1008-975)=₹ 33$
$\therefore \quad$ Profit percent $=\frac{33 \times 100}{975}=\frac{44}{13}=3 \frac{5}{13} \%$
Standard 13
Quantitative Aptitude